
Evorus: A Crowd-powered Conversational Assistant
Built to Automate Itself Over Time

Ting-Hao (Kenneth) Huang, Joseph Chee Chang, and Jeffrey P. Bigham
Language Technologies Institute and Human-Computer Interaction Institute

Carnegie Mellon University
{tinghaoh, josephcc, jbigham}@cs.cmu.edu

ABSTRACT
Crowd-powered conversational assistants have been shown to
be more robust than automated systems, but do so at the cost
of higher response latency and monetary costs. A promising
direction is to combine the two approaches for high quality,
low latency, and low cost solutions. In this paper, we introduce
Evorus, a crowd-powered conversational assistant built to auto-
mate itself over time by (i) allowing new chatbots to be easily
integrated to automate more scenarios, (ii) reusing prior crowd
answers, and (iii) learning to automatically approve response
candidates. Our 5-month-long deployment with 80 partici-
pants and 281 conversations shows that Evorus can automate
itself without compromising conversation quality. Crowd-AI
architectures have long been proposed as a way to reduce cost
and latency for crowd-powered systems; Evorus demonstrates
how automation can be introduced successfully in a deployed
system. Its architecture allows future researchers to make fur-
ther innovation on the underlying automated components in
the context of a deployed open domain dialog system.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
crowd-powered system; crowdsourcing; real-time
crowdsourcing; conversational assistant; chatbot

INTRODUCTION
Conversational assistants, such as Apple’s Siri, Amazon’s
Echo, and Microsoft’s Cortana, are becoming increasingly
popular, but are currently limited to specific speech commands
that have been coded for pre-determined domains. As a re-
sult, substantial effort has been placed on teaching people
how to talk to these assistants, e.g., via books to teach Siri’s
language [36], and frequent emails from Amazon advertising
Alexa’s new skills [1]. To address the problem of users not
knowing what scenarios are supported, AI2 recently built an
Alexa skill designed to help people find skills they could use,
only to have it rejected by Amazon [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-5620-6/18/04...$15.00
https://doi.org/10.1145/3173574.3173869

Figure 1. Evorus is a crowd-powered conversational assistant that au-
tomates itself over time by (i) learning to include responses from chat-
terbots and task-oriented dialog systems over time, (ii) reusing past re-
sponses, and (iii) gradually reducing the crowd’s role in choosing high-
quality responses by partially automating voting.

Crowd-powered assistants are more robust to diverse domains,
and are able to engage users in rich, multi-turn conversa-
tion. Some systems use professional employees, such as Face-
book M [15], while others use crowd workers, such as Cho-
rus [25]. Despite their advantages, crowd-powered agents re-
main largely impractical for deployment at large scale because
of their monetary cost and response latency [3, 19]. On the
other hand, crowd-powered systems are often touted as a path
to fully automated systems, but transitioning from the crowd
to automation has been limited in practice. The most straight-
forward approach is to use data from prior conversations to
train an automated replacement. This can work in specific
domains [46], or on so-called “chit-chat” systems [2]. Fully
automating a general conversational assistant this way can be
difficult because of the wide range of domains to cover and the
large amount of data needed within each to train automated
replacements. Such automated systems only become useful
once they can completely take over from the crowd-powered
system. Such abrupt transition points mean substantial upfront
costs must be paid for collecting training examples before any
automation can be tested in an online system.

In this paper, we explore an alternative approach of a crowd-
powered system architecture that supports gradual automation

Permissions@acm.org
https://doi.org/10.1145/3173574.3173869

over time. In our approach, the crowd works with automated
components as they continue to improve, and the architecture
provides narrowly scoped points where automation can be
introduced successfully. For instance, instead of waiting un-
til an automated dialog system is able to respond completely
on its own, one component that we developed recommends
responders from a large set of possible responders that might
be relevant based on the on-going conversation. Those re-
sponses are then among the options available to the crowd to
choose. Another component learns to help select high-quality
responses. Each problem is tightly scoped, and thus potentially
easier for machine learning algorithms to automate.

This paper introduces Evorus, a crowd-powered conversational
agent that provides a well-scoped path from crowd-powered
robustness to automated speed and frugality. Users can con-
verse with Evorus in open domains, and the responses are
chosen from suggestions offered by crowd workers and any
number of automated systems that have been added to Evorus.
Evorus supports increased automation over time in three ways
(Figure 1): (i) allowing third-party developers to easily inte-
grate automated chatterbots or task-oriented dialog systems
to propose response candidates, (ii) reusing crowd-generated
responses from previous conversations as response candidates,
and (iii) learning to automatically select high-quality response
candidates to reduce crowd oversight over time.

In Evorus, existing dialog systems can be incorporated via
simple REST (REpresentational State Transfer) interfaces that
take in the current conversation context, and respond with a
response candidate. Over time, Evorus learns to select a subset
of the automated components that are most likely to generate
high-quality responses for different context. The responses are
then forwarded to crowd workers as candidates. Workers then
choose which of the responses to present to the users. Evorus
sees workers selecting responses from candidates as signals
that enable it to learn to select both automated components
and response candidates in the future. It is important to note
that while Evorus is a functioning and deployed system, we
do not see the current version and its constituent components
to be final. Rather, its architecture is designed to allow future
researchers to improve on its performance and the extent to
which it is automated, by working on constituent problems,
which are each challenging in their own right. The structure of
Evorus provides distinct learning points that can be bettered by
other researchers. Others may include additional dialog sys-
tems or chatterbots, and improve upon its learning components,
driven by the collected data and its modular architecture.

We deployed the current version of Evorus over time to better
understand how well it works. During our deployment, auto-
mated response were chose 12.44% of time, Evorus reduced
the crowd voting by 13.81%, and the cost of each non-user
message reduced by 32.76%. In this paper, we explore when
the system was best able to automate itself, and present clear
opportunities for future research to improve on these areas.

This paper makes four primary contributions:

� Evorus Architecture: a crowd-powered conversational as-
sistant that is designed to gradually automate itself over

time by including more responses from existent chatbots
and reduce the oversight needed from the crowd;
� Learning to Choose Chatbots Over Time: we introduced

a learning framework that uses crowd votes and prior ac-
cepted message to estimate the likelihood of each chatbots
when receiving a user message;
� Automatic Voting: we implemented a machine learning

model for automatically reducing the amount of crowd over-
sight needed, evaluated its performance on a dataset of real
conversations, and developed a mathematical framework to
estimate the expected reward of using the model; and
� Deployment: we deployed Evorus for over 5 months with

80 participants and 281 conversations to understand how
the automatic components we developed could gradually
take over from the crowd in a real setting.

RELATED WORK
Our work draws from research on conversational agents, gen-
eral purpose dialog systems and crowd-machine systems.

General Purpose Dialog System: A number of general pur-
pose dialog systems such as IRIS [2] have been proposed.
Wen et al. [43] designed a neural network language gen-
eration model for multi-domain dialog systems. A deep-
learning-based domain adaptation model was also proposed
recently [11]. Project DialPort [50] introduced a multi-agent
framework that has the capability to include multiple task-
oriented dialog systems to hold a multiple domain conver-
sation. On the other hand, in the field of natural language
processing, general response generation technologies were
also developed. Ritter et al. [35] generated responses based on
phrase-based statistical machine translation based on Twitter
data. Li et al. [26] introduced a response generator based
on speaker model that encodes personas with background in-
formation and speaking style. Recently, researchers started
exploring end-to-end joint learning of language understanding
in dialogue systems [6, 48, 27]. However, after decades of
developments, sophisticated artificial “conversational intelli-
gence” are largely absent in modern digital products.

Crowd-powered Conversational Agents: Building fully-
automated, open-domain conversational assistants is a widely
researched topic in the field of artificial intelligence (AI), but
has thus far remained an open challenge. In response to this,
the Chorus [25] conversational agent is powered by a crowd
of human actors, which enables it to work robustly across
domains [24]. To help users manage information and services
through crowd-powered conversational agents, Guardian takes
as input a Web API and a desired task from the user and the
crowd determines the parameters necessary to complete the
task [20, 18]; IntructableCrowd helps users automate the man-
agement of sensors and tasks in their mobile phones through
a conversational agent [16]; and WearMail enables users to
access their emails by talking to the crowd-powered assistant
via smartwatch [39]. Conversational assistants powered by
trained human operators, such as Facebook M [15] and Magic
Assistant [29], have emerged in the recent years.

While most crowd-powered conversational systems function
well in laboratory settings, Chorus was deployed in the real

world [19] and revealed a range of problems such as determin-
ing when to terminate a conversation or protecting workers
from abusive content introduced by end users. Microsoft
Tey [45] introduced an AI-powered agent which encountered
problems when deployed publicly, because some users real-
ized that they could in�uence what Tey would say because
it mimicked them. Unlike Tey, Evorus does not learn only
by mimicking users, and paid crowd workers are kept in the
loop to verify responses in order to maintain quality. Our
deployment did not reveal such problems and we believe the
structure of Evorus makes such problems less likely.

Crowd-Machine Hybrid Systems: Crowd and machine hy-
brid systems have enabled us to solve a wide range of tasks
that were dif�cult for machines or humans to solve alone,
making impacts in areas including crowdsourcing, machine
learning, databases and computer vision [10, 21, 37, 34, 22].
For instance, Flock and Alloy [7, 5] use crowds to suggest
predictive features, label data, and weigh these features with
machine learning techniques to produce coherent categories
and accurate models. The Knowledge Accelerator [12] uses
crowds to synthesize such crowd-machine structures into co-
herent articles. Zensors creates custom computer vision sen-
sors bootstrapped by the crowd [23]. Similarly, CrowdDB [10]
uses human input for providing information that is missing
from the database, for performing computationally dif�cult
functions, and for matching, ranking, or aggregating results
based on fuzzy criteria. JellyBean [37] introduces a suite of
crowd-vision hybrid counting algorithms that can perform in
independent or hybrid modes returning more accurate counts
that either workers or computer vision could do alone.

EVORUS' CONVERSATIONAL ASSISTANT FRAMEWORK
Evorus obtains multiple responses from multiple sources, in-
cluding crowd workers and chatbots, and uses a voting mecha-
nism to decide which responses to send to the end-user.

Worker Interface
Evorus' worker interface contains two major parts (Figure 2):
thechat boxin the middle and thefact boardon the side. Chat
box's layout is similar to an online chat room. Crowd workers
can see the messages sent by the user and the responses candi-
dates proposed by workers and bots. The role label on each
message indicates it was sent by the user (blue label,) a worker
(red label,) or a bot (green label.) Workers can click on the
check mark (4) to upvoteon the good responses, click on the
cross mark (6) to downvoteon the bad responses, or type text
to propose their own responses. Beside the chat box, workers
can use the fact board to keep track of important information
of the current conversation. To provide context, chat logs and
the recorded facts from previous conversations with the same
user were also shown to workers.

The score board on the upper right corner displays the current
reward points the worker have earned in this conversation. If
the conversation is over, the worker can click the long button
on the top of the interface to leave and submit this task.

Selecting Responses using Upvotes and Downvotes
Crowd workers and bots can upvote or downvote on a response
candidate. As shown in Figure 2, on the interface, the upvoted

responses turned to light green, and the downvoted responses
turned to gray. Crowd workers automatically upvote their own
candidates whenever they propose new responses. Upon cal-
culating the voting results, we assigned a negative weight to a
downvote while an upvote have a positive weights. We empiri-
cally set the upvote weight at 1 and downvote's weight at 0.5,
which encourages the system to send more responses to the
user. We inherited the already-working voting threshold from
deployed Chorus [19], which accepts a response candidate
when it accumulates a vote weight that is larger or equal to 0.4
times number of active workers in this conversation. Namely,
Evorus accepts a response candidate and sends it to the user
when Equation (1) holds:

#upvote� Wupvote� #donwvote� Wdownvote

> #active_workers� threshold
Wupvote= 1:0; Wdownvote= 0:5; threshold= 0:4

(1)

We formally de�ned the#active_workersin the later subsec-
tion of real-time recruiting. Evorus does not reject a message,
so it does not have a threshold for negative vote weight.

Expiring Unselected Messages to Refresh Context
When Evorus accepts a response, the system turns the accepted
message to a white background, and alsoexpiresall other
response candidates that have not been accepted by removing
them from the chat box in the worker interface. This feature
ensures all response candidates displayed on the interface
were proposed based on the latest context. We also created a
“proposed chat history” box on the left side of worker interface,
which automatically records the worker's latest �ve responses.
Workers can copy his/her previously-proposed response and
send it again if the message expired too fast.

A Proposed, Accepted, or Expired Message
In Evorus, non-user messages are in one of three states: [Pro-
posed], [Accepted], or [Expired]. [Proposed] messages are
open to be up/downvoted. These messages were proposed by
either a worker or a bot, has not yet received suf�cient votes
to be accepted, and has not yet expired; [Accepted] messages
received suf�cient votes before they expired and were sent
to the user; and [Expired] messages did not receive suf�cient
votes before they expired. These messages were not sent to
the users, and were removed from the worker interface. A
[Rejected] state does not exist since Evorus does not reject a
message proactively.

Worker's Reward Point System
To incentivize workers, Evorus grants reward points to work-
ers for their individual actions such as upvoting on a message
or proposing a response candidate, and also for their collective
decisions such as agreeing on accepting a message or propos-
ing a message that were accepted. The score box on the right
top corner of the interface shows the current reward points to
the worker in real-time. Reward points are later converted to
bonus pay for workers. Without compromising output quality,
if some of these crowd actions can be successfully replaced
by automated algorithms, the cost of each conversation can
be reduced. Evorus' reward point schema was extended from
the Chorus reward schema, which was previously used during

	Introduction
	Related Work
	Evorus' Conversational Assistant Framework
	Worker Interface
	Selecting Responses using Upvotes and Downvotes
	Expiring Unselected Messages to Refresh Context
	A Proposed, Accepted, or Expired Message
	Worker's Reward Point System
	Real-time Recruiting & Connecting to Google Hangouts

	Evorus' Automation and Learning Framework
	Part I: Learning to Choose Chatbots Over Time
	Part II: Reusing Prior Answers
	Part III: Automatic Voting

	Part I: Learning to Choose Chatbots Over Time
	Ranking and Sampling Chatbots
	Estimating Likelihood of a Chatbot

	Part II: Reusing Prior Responses
	Part III: Automatic Voting
	Optimizing Automatic Voting

	Deployment Study and Results
	Phase 1: Chatterbots & Vote bot
	Phase 2: Learning to Select Chatbots

	Discussion and Conclusion
	Acknowledgements
	References

